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Purpose. To investigate new models characterizing dissolution data
obtained for heterogenous materials (model I) and under randomly
time-varying conditions (model II).
Methods. In model I, the heterogeneity of the dissolving substance
introduces variation of the fractional dissolution rate. In model II, the
fractional dissolution rate evolves randomly, and thus the dissolution
has the characteristics of a stochastic process. This situation is studied
for the constant and time-dependent means of the dissolution rate.
Results. The time dynamics of the dissolved fraction is presented for
model I. The standard characteristics of dissolution are derived under
general conditions and for several examples. One of them is in ac-
cordance with a function found empirically (1). A duality between the
time-dependency of the fractional dissolution rate and the heteroge-
neity of the substance is investigated. The mean and variance of the
dissolved fraction are calculated for model II. A method for estimat-
ing the mean dissolution rate is proposed and illustrated using Monte-
Carlo experiments.
Conclusions. It follows from model I that the heterogeneity, with the
same mean properties, slows down the dissolution with respect to the
homogeneous case. The second approach permits predictions about
the role of the stochastic fluctuations of the dissolution rate and to
establish the boundaries for the dissolution profiles.

KEY WORDS: dissolution; stochastic model; mean dissolution time;
heterogeneity.

INTRODUCTION

Quantitative studies on the dissolution process have been
performed for more than a century, and they range from
empirical descriptions based on statistical fitting of a generic
mathematical function to the experimental data to detailed
biophysical investigations. For a review of the importance of
dissolution tests for pharmaceutical studies see Dressman et
al. (2). The relationship between in vivo and in vitro results is
discussed in detail in Dunne et al. (3). The standard theory of
dissolution was developed as an extension of the Noyes-
Whitney model (4), and it is based on the assumption of a
constant proportionality of the dissolution rate to the concen-
tration difference [Cs–C(t)] between the solubility Cs and the
concentration C(t) of the substance in the dissolution me-
dium at time t (5). This assumption implies that the time
dependency of the dissolution has an exponential profile and
other basic models are the cubic root, two-thirds-root, and the
square root time equations (6).

The dissolution process can be empirically described by
quantifying the fraction of drug dissolved up to time t, f(t) 4
A(t)/D, where A denotes the amount of drug dissolved up to
time t and D is the dose. The function f(t) is monotonously
increasing from zero to an asymptote lower than or equal to
one, and thus it can be seen as a cumulative distribution func-
tion of a random variable T called the dissolution time. Hav-
ing the function f(t), we can define the fractional (relative)
dissolution rate, which under the condition of complete dis-
solution of the applied dose, takes form

k~t! =

df~t!

dt

1 − f~t!
(1)

and is the conditional probability that a randomly selected
molecule transfers from the solid state into the solution dur-
ing time interval < t,t + dt) under the condition that the dis-
solution has not taken place before t. As stressed above, Eq.
(1) implicitly assumes that all the applied amount of drug is
ultimately dissolved. Under this condition T is a proper ran-
dom variable, [f(`) 4 1]. If all of the drug does not become
dissolved in the course of dissolution [A(`) < D], then f(`)
4 A(`)/D < 1 and the fractional dissolution rate is

k~t! =

df~t!

dt

A~`!

D
− f~t!

(1a)

By modifying the function k(t) in Eqs. (1) or (1a), namely
considering its time dependency, new variants of the model
can be derived (7,8). In this article we concentrate on the
model given by Eq. (1); analogous extensions of Eq. (1a) are
straightforward.

There is an obvious variability in experimentally ob-
served dissolution data, even if all the conditions are kept
identical. This variability appears not only due to the mea-
surement errors but also due to the fluctuations of the physi-
cal characteristics of the dosage-units and temporal variability
of the conditions under which the dissolution takes place. A
detailed list of possible sources of the variability of the dis-
solution environment is presented by Elkoshi (9). The author,
in an attempt to include these random factors into a model of
dissolution, took a Weibull function as one of the most com-
mon descriptors of dissolution and randomly varied its pa-
rameters. This approach appears more suitable for character-
izing different experimental conditions rather than an influ-
ence of the environmental changes within a single
experimental trial. Recently, Macheras and Dokoumetzidis
(8) showed how the Weibull dissolution profile can be ob-
tained from the assumption that the fractional dissolution rate
is not constant during the whole process of dissolution but is
a power function of time. This dependency was introduced to
mimic the temporal changes of parameters of the dissolution
(reduction of the effective surface area, nonhomogenous hy-
drodynamic conditions, etc.).

A purpose of this article is to study the dissolution vari-
ability as it follows classic deterministic dissolution models
and their generalizations. Our approach is based on the situ-
ations in which the function k(t) appearing in Eq. (1) is in-
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fluenced by the heterogeneity of the dissolving substance
(polydispersity of the particles) or influenced by stochastic
factors during the process of dissolution. First, we briefly sum-
marize the relevant results for standard models. Variability
arising from the initial heterogeneity of the dissolving com-
pound is then investigated. In this situation, the variability is
present only at the onset of the dissolution when the param-
eters are fixed and does not evolve in time. In the third sub-
section, the effect of random temporal variability of the dis-
solution rate is studied. Methods for parametric inference of
the models are compared.

THEORY AND RESULTS

Deterministic Model with Homogeneous Particles

The classical model is characterized by a constant disso-
lution rate, k(t) 4 r > 0. Then, under the assumption of
complete dissolution, f(`) 4 1, T has an exponential distri-
bution of probability,

f~t! = 1 − exp~−rt! (2)

implying that for the mean dissolution time (MDT), its vari-
ance, and the relative dispersion (coefficient of variation)
holds E(T) 4 1/r, Var(T) 4 1/r2, and CV2 4 1. Solving Eq.
(2) for unknown t and with the left-hand side equal to 1/2, the
half-dissolution time, t1/2 is determined, t1/2 4 ln(2)/r. These
are the main properties characterizing Eq. (1) under the con-
stant fractional dissolution rate. If the applied dose of a drug
does not dissolve completely, as reflected by Eq. (1a), the
properties of the dissolution time remain valid but only con-
ditionally for the fraction that is finally dissolved. So, instead
of asymptote f(`) 4 1 in Eq. (2), the dissolution curve has
the asymptote A(`)/D.

In our recent article (7), we proposed an extension of the
first-order model [Eq. (2)] assuming that the fractional disso-
lution rate is not constant but a function of f(t), and conse-
quently of time t, k(t) 4 f [f(t)]. The simplest specification of
f which contains the exponential model as a limiting case is a
linear function, k(t) 4 r[1 − qf(t)], where q is the dose-
solubility ratio, q = D/u, denoting the amount of drug in the
medium that corresponds to solubility u, and r = k(0) is the
initial fractional dissolution rate. This approach is analogous
to the discrete-time model developed by Dokoumetzidis and
Macheras (10) and by Valsami et al. (11) and can be consid-
ered as the continuous-time counterpart of their model. Sub-
stituting k(t) into Eq. (1) we get the differential equation:

df~t!

dt
= r @1 − f~t!#@1 − qf~t!#, f~0! = 0 (3)

which has the solution:

f~t! =
exp@rt~1 − q!# − 1
exp@rt~1 − q!# − q

(4)

having two different asymptotes, f(`) 4 1 for q # 1 and f(`)
4 1/q for q > 1. The characteristics (MDT, CV and t1/2) of
dissolution profile [Eq. (4)] can be found in (7).

Another way to generalize the first-order model, as well
as its modification Eq. (3), is to consider time-dependency of
the dissolution rate r. We assumed in (7) a specific form of the

fractional rate to reflect low dissolution close to the time
origin:

r~t! = r @1 − exp~−t/t!# (5)

where t > 0 is a time constant characterizing the speed at
which r(t) achieves the constant level r. The form of r(t) en-
sures that the initial slope of f(t) is not so steep as in the
models with constant r (5). Independent of our investigations,
Macheras and Dokoumetzidis (8) used the fractional dissolu-
tion rate:

k~t! = rt−h, h < 1 (6)

which can be either decreasing or increasing the function of
time in dependency on parameter h. From experimental data,
both negative and positive values of h were estimated.

We may conclude that whatever form of the above mod-
els is selected, the variability of the particles (or media) is not
directly taken into account. A unique constant or time-
dependent dissolution rate are determined at the initial mo-
ment and fixed throughout all the course of dissolution.

Deterministic Model with Heterogeneous Particles
(Model I)

Let us assume that the drug is composed of n types of
components/particles characterized by different dissolution
rates ri , i 4 1, …, n. Then, using the simplest model [Eq. (1)]
with a constant rate for the fractions fi(t), dissolved up to
time t, we can write

dfi~t!

dt
= ri@1 − fi~t!#, fi~0! = 0, i = 1, …, n (7)

with solutions given for each i by Eq. (2). If the initial doses
are Di ~D = (i=1

n Di!, then it implies that for the amounts,
Ai(t), dissolved up to time t, it can be written

Ai~t! = Di@1 − exp~−rit!#, i = 1,…, n (8)

and thus, the total amount dissolved up to time t is

A~t! = (
i=1

n

Di@1 − exp~−rit!# (9)

Therefore, for the fraction dissolved up to time t, f(t) 4
A(t) /D, holds

f~t! =
1
D(

i=1

n

Di@1 − exp~−rit!# (10)

The result given by Eq. (10) can be reinterpreted by
taking into account that Di/D reflects the probability that a
randomly selected molecule of a drug comes from the group
i, pi ≈ Di/D, then:

f~t! = 1 − E@exp~−Rt!# (11)

where R has multinomial distribution of probability, Prob(R
= ri) 4 pi. Transition to any distribution of R, not only a
discrete one, can be made by realizing that the proportions
Di /D represent the cumulative distribution function F(r) ≈
(1/D)SDi , where Di are all sub doses with the rate constants
lower or equal to r. Then, the general form, which is equiva-
lent to Eq. (11) of the dissolution profile is
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f~t! = 1 − *0

`

exp~−rt!dF~r! (12)

which means that f is a complement to one of the Laplace-
Stiltjes transformation of the distribution of R. The achieved
results are illustrated below for several probability distribu-
tions of the rate constant R.

Examples

Figure 1 compares the dissolution profile given by Eq.
(2) of a homogeneous drug with a dissolution profile given by
Eq. (10) of a compound composed of two subpopulations.
The mean dissolution rate of the heterogenous compound is
the same as that of homogeneous drug (for details see text to
the figure).

If R is exponentially distributed, R ∼ le−lr (l > 0 is a
constant, E(R) 41/l), then from Eq. (12) we have

f~t! = 1 − *0

`

e−rtle−lrdr =
t

l + t
(13)

and see Fig. 1 for comparison of f(t) with that for the homo-
geneous drug. Following distribution [Eq. (13)], all of the
drug is finally dissolved, f(`) 4 1. The half-dissolution time
is t1/2 4 l 4 1/E(R), however, MDT is infinity, and also the
higher moments of Eq. (13) are infinite. Comparing, under
the assumption E(R) 4 r, the half-dissolution time for model
(13) with the half-dissolution time of the homogeneous drug,
we can see that it is always in the ratio 1 : ln2. How can the
exponential distribution of R be interpreted? It means that
the majority of drug molecules are characterized by low r
(small r means large MDT) and this fact induces that MDT 4 `.

Model [Eq. (13)] can also be directly derived from Eq.
(1) by assuming that k(t) 4 1/(l + t), which is the time-

dependent fractional dissolution rate. This is an example of
how one can obtain formally identical models starting from
very different assumptions. On one hand, it is time-dependent
fractional dissolution rate, on the other hand it is time-
constant dissolution rate, but the constants are different (ran-
dom) for each molecule of the drug. This duality will also be
shown in other situations.

The most common generalization of the exponential dis-
tribution is the Erlang distribution, R ∼ lnrn−1e−lr/(n − 1)!, (l
> 0 is a constant, n ∈ N), for which E(R) 4 n/l. Now the
dissolution profile is

f~t! = 1 − S l

l + tDn

(14)

(see Fig. 1). We can calculate all the moments for Eq. (14),
namely E(T) 4 l/(n − 1), for n $ 2], for n $ 3. Thus CV2 4
n/(n − 2), which tends to one as n increases and distribution
(14) gets closer and closer to the exponential one. The half-
dissolution time is t 1 / 2 = $l~1 − =n 1 / 2!%/=n 1 / 2, which
can be related to the mean of R. The results are analogous for
Gamma distribution which is characterized by non-integer
parameter n. Again, we can ask the question what form of the
fractional dissolution rate would imply this dissolution pro-
file. Using formula (14) in Eq. (1), we get k(t) 4 n/(l + t).

For the inverse Gaussian distribution of the fractional
rate constant, R ∼ =k / 2pr−3/2exp@ − k~r − m! / 2m2r#, for
which E(R) 4 m, we have

f~t! = 1 − expFk

m
S1 −Î2m2t

k
+ 1DG (15)

We can see from Fig. 1 that for R, either with Erlang or
inverse Gaussian distribution (with the same means and vari-
ances), the dissolution profiles are rather close. One can ex-
pect such a result taking into account similarity of these two
distributions (12). To calculate t1/2 for dissolution profile [Eq.
(15)] is an easy task, however, the moments are difficult to
obtain.

R is uniformly distributed in an interval (a,b), R ∼ 1/(b −
a), (b > a > 0) for which E(R) 4 (b + a)/2, f yields

f~t! = 1 −
e−at − e−bt

t~b − a!
(16)

Obviously, with a decreasing range of R, (b − a) → 0, while
centered around r, f(t) converges to 1 − e−rt as given by Eq.
(2). For Eq. (16) calculation of t1/2 and of the moments is a
tractable task. The uniform distribution of R would reflect
equal proportions of all subpopulations in the compound.

A natural question arises whether we can decide which
dissolution is faster, the homogenous drug with a fixed frac-
tional rate r or the nonhomogeneous one if the mean rate is
the same, E(R) 4 r. This question is meant not only in aver-
age or in the half-dissolution time but along all the dissolution
process. In the context of the above example with an expo-
nential distribution of R, we are interested in the relationship
between 1 − l/(l + t) and 1 − exp(−t/l) (see Fig. 1). In general,
the function g(r) 4 exp(−rt) is convex and by using Jensen’s
inequality (e.g., 13, p. 120) we can prove that for any t:

1 − E@exp~−Rt!# # 1 − exp@−E~R!t# (17)

Fig. 1. The fraction of dissolved amount in dependency on time for
different distributions of fractional dissolution rate R. The upper full
line is for the deterministic model [Eq. (2)] with r 4 1 (this can also
be interpreted as delta distribution of R centered at 1), and the lower
full line is for exponentially distributed dissolution rate [Eq. (13)]
with mean rate E(R) 4 1. The dotted curve is for a drug composed
of two subcomponents [Eq. (10)], which are present at the same
proportions (D1 4 D2) with dissolution rates r1 4 0.5 and r2 4 1.5
(thus for the mean rate holds E(R) 4 1). The dash-dot line [Eq. (14)]
is for Erlang distribution of R, again with E(R) 4 1 and n 4 2, which
implies Var(R) 41/2. The dash-dot-dot line [Eq. (15)] is for inverse
Gaussian distribution of R, again with E(R) 4 1 and Var(R) 4 1/2.
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which permits us to conclude: The dissolution of a homoge-
neous substance is always faster than that of nonhomoge-
neous compound for which the mean rate is the same as the
rate of the homogeneous one.

In the same way as for the simple exponential model, we
can propose an analogous generalization for Eq. (3). Then,
the system of Eqs. (7) is replaced by equations:

dfi~t!

dt
= ri@1 − qf~t!#@1 − fi~t!#, fi~0! = 0, i = 1, …, n, (18)

where f~t! = (1/D) (i=1
n Difi~t!. Equation (18) can be derived

in an analogous way to model (3), see (7). The intuitive rea-
son for the term [1 − qf(t)] in model (18) follows from the
fact that the dissolved drug forms identical complexes with
water irrespectively from which component/particle it comes.
Whereas Eqs. (7) are mutually independent and thus the sys-
tem is easily tractable, there is a common term in Eqs. (18)
which is influenced by all the components and thus we are not
able to find an analytical solution. Therefore, further analyses
of Eqs. (18) are restricted to the numerical methods only.

Identifying parameters of the models is crucial for veri-
fication and applications. Obviously, the main parameter in
the dissolution models is the rate constant r, and we further
focus our attention on it. Any parameter in a deterministic
model can be sensibly estimated from time series data only by
embedding the model in a statistical framework. It is usually
performed by assuming that instead of exact measurements
on f, we have these values blurred by observation errors
which are independent and normally distributed. The param-
eter r in the deterministic dissolution Eqs. (2) or (4) is esti-
mated by linear [after log transformation in Eq. (2)], or non-
linear least squares method with observation on concentra-
tion of dissolved drug, C(t), further transformed into f(t) and
serving as “dependent variable”.

Let us point out the meaning of estimation in the models
with heterogenous particles. The situation is qualitatively dif-
ferent from that described by Eq. (2) because the constant r
has been replaced by a random variable R. Now, by fitting the
curve f(t) to the observed data we obtain estimates of the
parameters of the distribution of R. In the simple example
given by Eq. (13), where we assumed the exponential distri-
bution of R, the estimate of l is calculated, and we know that
it is the inverse value of the mean of R. The same procedure
can be applied in all of the Eqs. (13)–(16) and their modifi-
cations.

Stochastic Model with Homogeneous Particles (Model II)

The heterogeneity of the drug has been reflected in the
model introduced above by the fact that the rate constants are
different for different particles and thus, from the population
point of view, it is a random variable. After determining the
rate constants at the beginning of the dissolution process, the
dissolution itself behaves in the deterministic manner. How-
ever, one can also expect that the rate constant varies in time,
not only deterministically as mentioned before, but in a ran-
dom way due to the unspecified fluctuations (e.g., heterog-
enous properties of dissolution media or of the substance). In
such a case, the rate becomes a stochastic process and conse-
quently also the fraction dissolved up to time t is a random
process; to distinguish between stochastic and deterministic

dissolutions, the symbol f is further replaced by F. If the
changes of the rate are smooth and without any dominant
component, it can be represented by equation:

R~t! = r + sj~t! (19)

where j(t) is the Gaussian white noise (a formal derivative of
the Brownian motion dB(t)/dt, sometimes also called Wiener
process), s > 0 is its amplitude and r > 0 is the deterministic
part of the noisy dissolution rate. Now, the constant r is only
the mean of R, E[R(t)] 4 r. For physical reasons we should
require condition R(t) $ 0, however, it would mean a formal
restriction and consequently decreased tractability of the
model. Therefore, we continue to control positivity of R(t)
only through the amplitude of noise.

Considering the basic exponential model with complete
dissolution and under Eq. (19), we can write it in the form of
a stochastic differential equation:

dF~t! = r @1 − F~t!#dt + sj ~t!@1 − F~t!#dB~t!, F~0! = 0 (20)

which in Ito-sense has solution (14):

F~t! = 1 − expF− Sr +
1
2

s2Dt − sB~t!G (21)

which is know as the geometric Brownian motion. Now, when
the dissolution profile is a random process only its statistical
properties can be analyzed. However, formulation of the
model via a stochastic differential equation permits us to per-
form Monte-Carlo experiments with it [for details on simula-
tion of biological diffusion see (15)]. The discretized version
of Eq. (20) with the time step D and notation Fj 4 F(jD) is

Fj+1 = Fj + r ~1 − Fj!D + snj =D~1 − Fj!, F0 = 0 (22)

where nj ∼ N(0,1) are independent realizations of standard
Gaussian random variable. Trajectories of the process
[Eq.(21)] are illustrated in Fig. 2 for different values of s. It is
apparent that with increasing noise, locally negative values of
the dissolution rate appears and the model would require
further modification.

Using Eq. (21), the moments of the random function F
can be calculated. We can show (16) that as expected

E @F~t!# = 1 − exp~−rt! (23)

which means that the mean of the dissolution process behaves
as deterministic [Eq. (2)] and for the variance of the dissolved
fraction holds

Var @F~t!# = @exp~s2t! − 1#exp~−2rt! (24)

It follows from Eq. (23) that E[F(`)] 4 1, so the drug is
ultimately dissolved, but only as the mean of the dissolution
curves is concerned. To prove that the complete dissolution
arises with probability one, we have to show that Var[F(`)]
4 0 holds. As it follows from Eq. (24), this is true only for 2r
$ s2 and otherwise Var[F(`)] 4 ` and this result has an
intuitive interpretation. If the amplitude of the noise s is too
large with respect to the mean dissolution rate constant r,
then the stochastic rate [Eq. (19)] often achieves negative
values; and this is responsible for infinite dispersion of F.
Therefore only relatively small fluctuations of r are practically
acceptable but even under this condition a temporal negativ-
ity of R(t) can arise.
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Having at disposal variance [Eq. (24)] of the dissolved
fraction we can plot a confidence region in which most of the
trajectories of F(t) can be expected, E[F(t)] ± 2√Var[F(t)],
(Fig. 3). Further, from Eq. (23) we can estimate the half-
dissolution time of the mean trajectory by solving it for un-
known t and with the right-hand-side equal to 1/2. We obtain
the formula for the exponential model and by solving analo-
gous equations for E[F(t)] ± 2√Var[F(t)] the boundaries for
t1/2 can be determined (see text to Fig. 3). Under the condition
2r $ s2 and using Eq. (24), we can determine the time instant
of maximum variance:

tm =
1

s2lnS 2r

2r − s2D (25)

The random fluctuation of the dissolution constant as
described by Eq. (19) can also be introduced in models with
nonconstant r. For Eq. (3) this stochastic variation yields

dF~t! = r@1 − F~t!#@1 − qF~t!#dt + sj~t!@1 − F~t!#
@1 − qF~t!#dB~t! (26)

with initial condition F(0) 4 0. Solution of this stochastic
differential equation is

F~t! = 1 −
expFSr~q − 1! −

1
2

s2Dt − sB~t!G
1 + qr *0

t
expFSr~q − 1! −

1
2

s2Ds − sB~s!Gds

(27)

which for s → 0 tends to the solution given by Eq. (4). Un-
fortunately, Eq. (27) does not help to calculate the moments
of F(t).

The regression method, which is used for the determin-
istic exponential model blurred by measurement errors, does
not lead to a good estimate of the parameter r of model (26)
because it is based on the assumptions of normality and in-
dependence, which are not valid here. Variability of the rate
does not result in the same type of error as measurement
variability. Therefore a different method should be devised.
The maximum likelihood estimate of r based on a continuous
observation of the process F given Eq. (20) in the time (0,T) is

r̂ =
1
T *0

T dF~t!

1 − F~t!
(28)

(e.g., 17). Of course, for s → 0, substituting the exponential
model into Eq. (28), we have r̂ 4 r. Eq. (28) can be trans-
formed into a form suitable for discrete time observations
obtained at instances t1, . . ., tn , as available in the dissolution
experiments:

r̂ =
1
T (

j =1

n−1
F~tj+1! − F~tj!

1 − F~tj!
(29)

The statistical properties of the estimate r̂ are well known
(e.g., 17). Formula (29) can be compared with the results
obtained by linear regression used on transformed Eq. (2).
For example, for computerized experiments presented in Fig.
2a., the estimates of r obtained by formula (29) are 0.99 (0.94),
1.02 (0.99), and 1.00 (0.97) where the numbers in parentheses
are the estimates obtained from regression. We used the

Fig. 2. Profiles of the fraction of the dissolved amount in dependency
on time for stochastic model [Eq. (21)] with parameter r 4 1 and
different variability of the dissolution rate (a) s 4 0.1, and (b) s 4

0.2 where locally negative profiles of the dissolution arises.

Fig. 3. Mean of F(t) given by Eq. (23) together with confidence re-
gion calculated from Eq. (24) are plotted against time. The full line is
the mean calculated for r 4 1, the dashed lines gives the confidence
region calculated for s2 4 0.01, the dotted lines were calculated by
using s2 4 0.1. The half-dissolution time for the deterministic model
(full line) is 0.69, the ranges calculated for the confidence regions are
(0.53, 0.86) for s2 4 0.01 and (0.28, 1.24) for s2 4 0.1.
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simulated values Fj obtained from Eq. (22) instead of the
observed values F(tj), assuming equidistant sampling step D,
tj 4 jD. The estimates of the parameters of the model given by
Eq. (26) can be derived analogously to the above procedure.

DISCUSSION

We have shown that heterogeneity of the particles, which
is reflected by variation of the dissolution rate constant r,
induces that dissolution profiles can be described by a wide
class of functions. For example, Bohner et. al. (1) successfully
fit the dissolution curve of b-Tricalcium phosphate powder by
y(t) 4 t/(a + bt). The authors claim that the equation has been
used to estimate the initial dissolution rate (41/a) and not to
provide a mechanistic description of dissolution. Model [Eq.
(13)] derived from the heterogeneity assumptions results in
the same form at the time origin and if model (1a) is em-
ployed, we have exactly the same curve as the model predic-
tion. Of course, as mentioned before, specific form of time
dependency of k(t) in Eq. (1) gives the same result. To solve
this duality problem whether variability of k in time or vari-
ability of r at the initial moment is responsible for the effect
cannot be successfully answered theoretically but only from
experiments. On the other hand, Eq. (12) permits us to solve
an inverse problem—what distribution of the rate constant R
corresponds to the observed dissolution profile f.

The conjecture arising from the assumption about the
heterogeneity of the particles predicts the slower dissolution
of nonhomogeneous compounds. As it follows from Fig. 1,
this result is not so striking as the difference of MDTs which
under some conditions can be even infinitely large. The ques-
tion that remains open is to decide which distribution of R is
realistic and under which conditions. In addition, the same
development can be applied to more detailed models as, for
example, those which consider the geometrical properties of
the particles (6). In this way, heterogeneity of the particles
would be introduced into models that take into account the
difference between surface and volume dissolution and other
specific biophysical characteristics. We should note that our
approach to the dissolution of heterogeneous particles if for-
mally analogous to the method used by Gross et al. (18) and
Donbrow et al. (19) in describing the kinetics of the release of
material from populations of microcapsules.

The stochastic variation of the fractional dissolution rate
can also be interpreted in the context of articles (8) and (9).
To get the Weibull dissolution profile from Eq. (1), it is suf-
ficient to assume that k(t) 4 abtb−1 [see Eq. (6)]. As men-
tioned, the variability of conditions can be reflected by sta-
tistical variation of the constants appearing in the model as
well as by their time dependency. However, both approaches
lead to different interpretations and predictions. In particular,
the deterministic model always predicts the same dissolution
profile with measurement error being the only source of vari-
ability, whereas the stochastic approach has variability as its
intrinsic property. Under this scenario there is no unique dis-
solution profile (for examples see Fig. 2), but their families
have some probabilistic properties. As mentioned, stochastic
variation of the rate constant may result in locally non-
monotonous dissolution profiles (Fig. 2b). See Valsami et al.
(11) for treatment of this type of experimental data by a
stochastic model with discrete time step.

The intrinsic variability of the rate reflected by stochas-

ticity of the dissolution profile implies that the random vari-
able T cannot be defined as it was done in the case of f, even
the term half-dissolution time loses its sense and only the
boundaries for such a quantity can be determined. In Fig. 3
we presented regions in which the realizations of the dissolu-
tion profile will be confined with a prescribed probability, but
it does not mean that a single realization could not be com-
pletely or partly outside such a region. As given by Eqs. (24)
and (25), the maximum of the dissolution variance is reached
at the middle of the profiles and this result corresponds to the
cases presented in (9, Figs. 2 and 3).

Presenting dissolution as a stochastic process has sub-
stantial advantages. First of all, it is more realistic because one
can expect that even under identical physical and chemical
conditions the dissolution profiles will not be the same as
predicted by deterministic models. Further, this approach of-
fers new and probably more efficient methods for parametric
inference based on the experimental data compared to the
classical regression methods.
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